The osmopressor response is linked to upregulation of aquaporin-1 tyrosine phosphorylation on red blood cell membranes.

نویسندگان

  • You Hsiang Chu
  • Yu-Juei Hsu
  • Herng Sheng Lee
  • Shung-Tai Ho
  • Che-Se Tung
  • Ching-Jiunn Tseng
  • Min-Hui Li
  • Tso-Chou Lin
  • Chih-Cherng Lu
چکیده

Studies in patients with an impaired efferent baroreflex led us to discover that ingesting water induces a robust increase in blood pressure and vascular resistance. This response was also present in healthy subjects with intact baroreflexes, described as osmopressor response. This study was to discover the physiology of the osmopressor response by determining functional activation of the aquaporin-1 water channel receptor on red blood cell membranes in young healthy subjects. In a randomized, controlled, crossover fashion, 22 young healthy subjects (age, 19-27 years) ingested either 500 or 50 mL of water. Heart rate, blood pressure, cardiac index, and total peripheral vascular resistance were measured using a Finometer hemodynamic monitor. Blood sampling was performed at 5 minutes before and at 25 and 50 minutes after either the water ingestion or control session. Immunoblotting for aquaporin-1 tyrosine phosphorylation was performed before and after subjects ingested either 500 or 50 mL of water. At 25 minutes after the ingestion of 500 mL of water, total peripheral resistance increased significantly, and plasma osmolality decreased. Functional expression of aquaporin-1 tyrosine phosphorylation on red blood cell membranes increased significantly at 25 and 50 minutes after subjects ingested 500 mL of water compared with that before water ingestion. This study concludes that water ingestion produces upregulation of aquaporin-1 tyrosine phosphorylation on red blood cell, which presents as a novel biological marker that occurs simultaneously with the osmopressor response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytosolic inactivation of translocated neutrophil plasma membrane protein tyrosine phosphatase.

Phosphotyrosine phosphatases (PTPases) regulate cellular metabolic activation by reversing the effects of tyrosine kinases activated earlier in intracellular signaling pathways. We coupled fluorescence-activated cell sorter analysis using anti-CD45 monoclonal antibody with direct measurements of enzyme activity in resolved subcellular fractions to define mechanisms that potentially regulate the...

متن کامل

I-7: Maternal Signalling to the Placenta

Background: Though it is well established that maternal blood-borne signals influence highly the growth of the placenta, the mechanisms are not known. In vitro trophoblast culture models are limited by an inability to reconstruct the polarised bilayer of the human hemochorial placenta. We have used a first trimester villous tissue explant system to investigate how growth factors interact with p...

متن کامل

Deficient Expression of Bruton's Tyrosine Kinase in Monocytes from X-Linked Agammaglobulinemia as Evaluated by a Flow Cytometric Analysis and its Clinical Application to Carrier Detection

Background: The B-cell defect in X-linked agammaglobulinemia (XLA) is caused by mutations in the gene for Bruton's tyrosine kinase (BTK). BTK mutations result in deficient expression of BTK protein in peripheral blood monocytes. Methods: Using the anti-BTK monoclonal antibody (48-2H), a flow cytometric analysis of intra cytoplasmic BTK protein expression in monocytes was performed to identify I...

متن کامل

The Oxidative Stress-Induced Increase in the Membrane Expression of the Water-Permeable Channel Aquaporin-4 in Astrocytes Is Regulated by Caveolin-1 Phosphorylation

The reperfusion of ischemic brain tissue following a cerebral stroke causes oxidative stress, and leads to the generation of reactive oxygen species (ROS). Apart from inflicting oxidative damage, the latter may also trigger the upregulation of aquaporin 4 (AQP4), a water-permeable channel expressed by astroglial cells of the blood-brain barrier (BBB), and contribute to edema formation, the seve...

متن کامل

The roles of EPIYA sequence to perturb the cellular signaling pathways and cancer risk

Abstract It was shown that several pathogenic bacterial effector proteins contain the Glu-Pro-Ile-Tyr-Ala (EPIYA) or a similar sequence. These bacterial EPIYA effectors are delivered into host cell via type III or IV secretion system, where they undergo tyrosine phosphorylation at the EPIYA sequences, which triggers interaction with multiple host cell SH2 domain-containing proteins and thereby...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hypertension

دوره 62 1  شماره 

صفحات  -

تاریخ انتشار 2013